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Primordial Black Holes: Pair Creation, Lorentzian
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The wave function of the universe is usually taken to be a functional of the three-
metric on a spacelike section, S , which is measured. It is sometimes better,
however, to work in the conjugate representation, where the wave function
depends on a quantity related to the second fundamental form of S . This makes
it possible to ensure that S is part of a Lorentzian universe by requiring that the
argument of the wave function be purely imaginary. We demonstrate the
advantages of this formalism first in the well-known examples of the nucleation
of a de Sitter or a Nariai universe. We then use it to calculate the pair creation
rate for submaximal black holes in de Sitter space, which had been thought to
vanish semiclassically. We also study the quantum evolution of asymptotically
de Sitter black holes. For black holes whose size is comparable to that of the
cosmological horizon, this process differs significantly from the evaporation of
asymptotically flat black holes. Our model includes the one-loop effective action
in the s-wave and large-N approximation. Black holes of the maximal mass are
in equilibrium. Unexpectedly, we find that nearly maximal quantum
Schwarzschild ±de Sitter black holes antievaporate. However, there is a different
perturbative mode that leads to evaporation. We show that this mode will always
be excited when a pair of maximal cosmological black holes nucleates.

1. INTRODUCTION

The no-boundary proposal [1] is formulated in terms of Euclidean path

integrals. But the world we live in is Lorentzian, or at least we interpret our

observations in terms of Lorentzian spacetime. One therefore has to continue

the results from the Euclidean path integrals analytically to the Lorentzian

regime.
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The approach to quantum cosmology that has been followed in the past

is to examine the behavior of the wave function as a function of the overall

scale a of the metric hij on the spacelike surface S . If the dependence on a
was exponential, this was interpreted as corresponding to a Euclidean space-

time, while an oscillatory dependence on a was interpreted as corresponding

to a Lorentzian spacetime.

For example, in the case of Einstein gravity with a cosmological constant

L , the path integral for the wave function of a three-sphere of radius a will

be dominated by an instanton which is part of a four-sphere of radius R0 5
! 3/ L . In this saddlepoint approximation, the wave function will be given

by e 2 I, where I is the Euclidean action of the saddlepoint geometry; we are

neglecting a prefactor. For a , R0, there will be a real Euclidean geometry

bounded by the three-sphere S of radius a. The wave function C will be 1

for a 5 0, and will increase rapidly with a, up to a 5 R0. For a . R0, there

are no Euclidean solutions with the given boundary conditions.
There are, however, two complex solutions, each of which can be thought

of as half the Euclidean four-sphere, joined to part of the Lorentzian de Sitter

solution. The real part of the action of these complex solutions is equal to

the action of the Euclidean half-four-sphere, and is the same for all values

of a. On the other hand, the imaginary part of the action comes from the
Lorentzian de Sitter part of the solution, and depends on a. Thus the wave

function for large a oscillates rapidly with constant amplitude.

This shows the association between an oscillatory wave function and a

Lorentzian spacetime, but the distinction between exponential and oscillatory

is not precise, and does not identify which part of the wave function describes

which physical situation. In more complicated situations, the saddlepoint
complex solutions will not separate neatly into Euclidean and Lorentzian parts,

so it is not clear how to calculate the probability of Lorentzian geometries.

One might apply appropriate operators to the wave function to recover

information about whether a given spacelike surface is part of a Lorentzian

or a Euclidean spacetime. But the use of operators is cumbersome and requires

the evaluation of C for a range of arguments. It would be preferable if the
observable geometric properties, such as the Lorentzian character of the

universe, were manifest in the argument of the wave function. The square

of its amplitude would then yield a probability measure for any given set of

such quantities.

We therefore want to put forward an approach which focuses on the

defining characteristic of a Lorentzian geometry in the neighborhood of S .
This is that the induced metric hij on S should be real, but the second

fundamental form,

Kij 5 ¹ i nj (1.1)
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defined for Euclidean signature, should be purely imaginary. Here n j is the

unit normal to the surface S . The second fundamental form is also called

the extrinsic curvature of the surface S in the manifold M. It can be regarded
as the derivative of the metric hij on S , as S is moved in its normal direction

in M. Thus, requiring the second fundamental form to be purely imaginary

means that hij has a real derivative with respect to the Lorentzian time

coordinate t 5 Im( t ), where t is Euclidean time. This is the condition for a

Lorentzian geometry in a neighborhood of S .

The second fundamental form, Kij, is trivially related to p ij, the momen-
tum conjugate to hij:

p ij 5 2 h1/2(Kij 2 hij Kklh
kl) (1.2)

where h is the determinant of the metric hij. Clearly, for real metrics hij,
taking Kij to be purely imaginary is equivalent to taking p ij purely imaginary.

It is easy to transform from the usual representation of the wave function

C [hij ] to the momentum representation, in which the wave function is a

functional of p ij. The two representations are related by a Laplace transform:

C [ p ij] 5 # d[hij] C [hij] exp 1 2 # S

d 3x p ijhij 2 (1.3)

where the integral over the metric components at each point of S is taken

to be over all hij with positive determinant h. This Laplace transform can be
analytically continued to complex values of p ij. The wave function for a

universe that is Lorentzian in a neighborhood of S is then obtained by taking

p ij to be purely imaginary.

Thus the requirement that we live in a Lorentzian universe can be made

manifest in the argument of the wave function. Further support for choosing

the momentum representation comes from the fact that we cannot measure
the metric globally on a spacelike section, but that the expansion rate of the

universe, which is related to the second fundamental form, is easily

observable.

The saddlepoint approximation to the wave function will be

C [ p ij] 5 e 2 I (1.4)

where we neglect a prefactor; here

I 5 2
1

16 p # d 4x g1/2(R 2 2 L ) (1.5)

is the Euclidean action3 of a complex solution of the field equations with

3 Note that this action does not contain the usual surface term, which is canceled exactly in
the Laplace transform.
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the imaginary given values of p ij on S . This complex saddlepoint solution

will be Lorentzian near S by construction. Further away it may be complex

or Euclidean, but this does not matter because one is making measurements
only on S . One therefore has to perform a path integral over the metric

everywhere except on S . The use of a complex saddlepoint solution does

not mean that spacetime is complex. It can just be regarded as a mathematical

trick to evaluate the path integral.

2. HOMOGENEOUS ISOTROPIC UNIVERSE WITHOUT
BLACK HOLES

We can illustrate the above discussion by a consideration of general

relativity without matter fields but with a cosmological constant L . Because

we are not interested in gravitational waves, we shall restrict ourselves to

spherically symmetric solutions. This means that the second fundamental
form Kij has two independent components, Ks and Kl. By a gauge choice, we

can consider only cases with Kl constant on S .

A homogeneous isotropic universe without black holes is the background

with respect to which we have to compare the probability of a universe

containing a pair of black holes. This is the familiar de Sitter model, with
the Euclidean saddlepoint metric

ds2 5 V(r) d t Ã2 1 V(r) 2 1 dr2 1 r2 d V 2 (2.1)

where

V(r) 5 1 2
L
3

r2 (2.2)

We can make a choice of coordinates in which the spacelike surfaces S will

be round three-spheres. Then the metric takes the form

ds2 5 d t 2 1 a( t )2 d V 2
3 (2.3)

where d V 2
3 5 dx2 1 sin2x d V 2

2 is the metric on the unit three-sphere, and

a( t ) 5 R0 sin (R 2 1
0 t ) (2.4)

The second fundamental form4 K j
i contains only one independent compo-

nent K 5 Kl , since

4 As we pointed out in the previous section, we should strictly be working with the canonical
momentum p ij. The Lorentzian condition that the argument of the wave function be purely
imaginary, however, can equally well be implemented for various combinations of p ij and hij,
such as Kij or K j

i. Here we are choosing the latter quantity for the sake of clarity, since it
leads to rather simple equations. It is straightforward to repeat the treatment using components
of p ij.
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Kl 5 Ks 5
aÇ

a
(2.5)

An overdot denotes differentiation with respect to Euclidean time t . For K
real (i.e., Euclidean), there will always be a real Euclidean solution. For

positive K, this will be less than half the Euclidean four-sphere of radius R0

and for K negative, it will be more than half. The action will be

IdS(K ) 5 2
3 p
4 L F 2 2

(3 1 2K2)K

(1 1 K2)3/2 G (2.6)

The saddlepoint approximation to the wave function, neglecting the prefactor

A, will be

C (K ) 5 exp [ 2 IdS(K )] (2.7)

For K 5 0, the saddlepoint solution will be half the Euclidean four-sphere
and the wave function will be

C 5 exp 1 3 p
2 L 2 (2.8)

Having calculated the wave function for real K, one can now analytically
continue to complex values. Up the imaginary K axis, only the imaginary

part of the action will change, as can be seen from Eq. (2.6). Thus, the

amplitude of the wave function will remain at the value for K 5 0 given in

Eq. (2.8). But the phase of the wave function will vary rapidly with the

imaginary part of K. The wave function for positive imaginary K will be be

given by just one of the two complex solutions we had before. It is the one
that consists of the half Euclidean four-sphere, joined at the time of minimum

radius to an expanding de Sitter solution (see Fig. 1).

Thus this approach separates the expanding and contracting phases of

the de Sitter universe, which occur when one looks at the wave function in

the hij representation.

3. UNIVERSE WITH MAXIMAL BLACK HOLES

To get a universe containing black holes, one would like to calculate

the probability for a Lorentzian geometry on a spacelike surface S with n
handles. This would represent an expanding universe, with n pairs of black
holes, that inflated from spacetime foam. It seems reasonable to suppose that

the probability of n handles is roughly the nth power of the probability of a

single handle, with appropriate phase space factors. Thus it is sufficient to

consider the relative probabilities for zero and one handles. We shall restrict
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Fig. 1. The creation of a de Sitter universe (left) can be visualized as half of a Euclidean four-

sphere joined to a Lorentzian four-hyperboloi d. Right: The corresponding nucleation process

for a de Sitter universe containing a pair of black holes. In this case the spacelike slices have

nontrivial topology.

ourselves to spherical symmetry, to make the problem tractable, but it is

reasonable to assume that spherical configurations dominate the path integral.

The zero-handle surfaces (topology S3) correspond to the Lorentzian

de Sitter solution, while the one-handle surfaces (topology S1 3 S2) corre-
spond to the Schwarzschild±de Sitter solution, with the Lorentzian metric

ds2 5 2 V(r) dtÃ2 1 V(r) 2 1 dr 2 1 r2 d V 2 (3.1)

where

V(r) 5 1 2
2 m
r

2
L
3

r 2 (3.2)

This represents a pair of black holes in a de Sitter background. The mass

parameter m of the black holes can be in the range from zero up to a maximum

value of 1/(3 ! L ). For mass less than the maximum value, the surface gravity

of the black hole horizon is greater than that of the cosmological horizon.
This means that if one tries to turn the Schwarzschild±de Sitter solution into

a compact Euclidean instanton (d t 5 i dt), one gets a conical singularity

either on the black hole horizon or on the cosmological horizon. For this

reason, it has been thought that black holes could spontaneously nucleate in

a de Sitter background only if they had the maximum mass [2±4]. We shall

show in the next section that this conditions can in fact be relaxed.
For now, we shall focus on the maximal case. In this limit, the Schwarz-

schild±de Sitter solution degenerates into the Nariai solution, in which the

two horizons have the same area and surface gravity, and a compact Euclidean

instanton is possible without conical singularities:
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ds2 5 d t 2 1 a( t )2 dx2 1 R2
1 d V 2

2 (3.3)

where a( t ) 5 R1 sin(R 2 1
1 t ). The two-spheres on S all have the same radius,

R1 5 1/ ! L , so Ks 5 0 and there will be only one independent component

of the second fundamental form, K 5 Kl. The Euclidean saddlepoint is a

direct product of two round two-spheres of radius R1. The Lorentzian Nariai
solution is the direct product of (1 1 1)-dimensional de Sitter space with a

round two-sphere.

The value of K will govern the size of the first Euclidean two-sphere

in the same way it did for the de Sitter four-sphere in the previous section.

For real K, the geometry is entirely Euclidean, while for imaginary K, it will

consist of half of S2 3 S2 joined to the expanding half of the Lorentzian
Nariai solution (see Fig. 1). The action will be given by

IN(K ) 5 2
p
L 1 1 2

K

! 1 1 K 2 2 (3.4)

yielding the wave function

C N(K ) 5 exp[IN(K )] (3.5)

To obtain a Lorentzian universe, we must choose K to be purely imagi-

nary. Then the real part of the Euclidean action, which gives the amplitude
of the wave function, will be 2 2 p / L . As in the de Sitter case, this is

independent of K as long as Re(K ) 5 0. The imaginary part of the action,

which gives the phase of the wave function, depends on K.

To calculate the pair creation rate of Nariai black holes on a de Sitter

background, we note that C * C is a probability measure. It is important to

stress that the probability measure depends only on the real part of the
saddlepoint action, which stems from the Euclidean sector. In accordance

with other instanton methods, the pair creation rate G N can thus be obtained

by normalizing this probability with respect to de Sitter space:

G N 5
C *N C N

C *dS C dS

5 exp{ 2 2[Re(IN) 2 Re(IdS)]}

5 exp 1 2 p
L 2 (3.6)

Therefore the pair creation of black holes is highly suppressed except when

the (effective) cosmological constant is close to the Planck value, as it may

have been in the earliest stages of inflation.
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4. UNIVERSE WITH SUBMAXIMAL BLACK HOLES

In the previous section, we chose to consider only black holes of maximal

size in order to avoid a conical singularity in the Euclidean saddlepoint
solution. For a metric to dominate the path integral, it has to be a solution

of the Einstein equations at every point of the manifold; but on a conical

singularity clearly it is not. Thus the action will not be stationary with respect

to general variations of a metric containing a conical singularity.

But there is one way to resolve the problem: If the Lorentzian spacelike
surface S on which the measurements are made can be arranged to contain

the conical singularity, then the metric there can be held fixed. Then the four-

manifold can be varied only at points where it does solve the Einstein equation,

and consequently it will dominate the path integral. This is indeed possible

in the Schwarzschild±de Sitter spacetime, as we will show.

Another way to see this is by returning to the analogy that originally
motivated the Euclidean prescription for the wave function of the universe.

In a quantum mechanical system, the ground-state wave function can be found

either as the lowest-eigenvalue solution to the time-independent SchroÈ dinger

equation, or as the path integral

C 0(x) 5 N # d x( t )e 2 I[x( t )] (4.1)

where the integral is over all paths from x 5 0 at t 5 2 ` to x at t 5 0, and

I is their Euclidean action. This can be derived from the Lorentzian propagator

^ x, 0 | 0, t8 & 5 o
n

C n(x) C n(0)eiEnt8 5 # d x(t)eiS[x(t)] (4.2)

where S is the Lorentzian action and C n is the eigenfunction to the energy

En. When one Wick-rotates by taking t 5 it, all terms in the sum except for
the lowest vanish in the limit as t ® 2 ` , and one obtains Eq. (4.1).

In the semiclassical approximation, Eq. (4.1) becomes

C 0(x) 5 Ne 2 I[xsol( t )] (4.3)

where xsol( t ) is a solution of the Euclidean equations of motion with the given

boundary conditions (and we assume it is the only one). The corresponding

probability measure C *0 C 0 can be obtained by taking the exponential of

minus the action of the double of this solution: the path from x 5 0 at t 5
2 ` to x at t 5 0, and its time reflection from x at t 5 0 to x 5 0 at t 5
` . Thus the path will typically have a cusp at x 5 0. This argument, which

is seen to hold in the well-defined case of quantum mechanics, supports our

view that cusplike singularities ought to be admitted on the spacelike boundary

surface in the Euclidean path integral of quantum cosmology. In this case, too,



Primordial Black Holes 1235

the probability measure can be obtained both as the square of the amplitude of

the wave function or by calculating the action of the double of the saddlepoint

path, which is usually nondifferent iable on S .
Thus, conical singularities on S are allowed, if they correspond to

components of hij that are measured. For example, if one wants the probability

of an S1 3 S2 handle with a two-sphere cross section s of area A, one can

impose the Lorentzian condition that the real part of the second fundamental

form vanish everywhere on S except for s . One cannot specify the second

fundamental form on s , because one is prescribing the metric there. On the
other hand, one can impose the Lorentzian condition that the real part of the

second fundamental form is zero everywhere else on S . This allows one to

find a saddlepoint solution bounded by a surface S with a handle of area A
for any area up to the maximum 4 p / L . Therefore the nucleation of Schwarz-

schild±de Sitter black hole pairs of any size can be analyzed in the instanton

formalism. We choose the cosmological horizon to be regular in the Euclidean
sector, which will lead to a conical singularity on the black hole horizon.

This is allowed as long as the surface of measurement S contains the coni-

cal singularity.

The cross section s corresponds to the black hole horizon; it will be

the smallest S2 in the spacelike surface S . (For, assume it is not. Then the
s will not correspond to the conical singularity, whose metric will then not

be fixed on the boundary. But such configurations will not dominate in the

path integral and can be neglected.) One can now choose some slicing of

Schwarzschild±de Sitter spacetime which must have the property that the

proper time between points on different slices goes to zero at least quadrati-

cally as a function of proper distance from the black hole horizon. This type
of slicing is shown schematically in a Penrose diagram in Fig. 2.

It ensures that all Lorentzian spacelike slices will be regular on the black

hole horizon. We shall not give any such slicing explicitly. Once a particular

slicing is chosen, there will again be only one degree of freedom in the

second fundamental form, say K 5 * d 3x h1/2Kijh
ij.

Thus, in the Schwarzschild±de Sitter case, the wave function has two
arguments, A and K. The first determines the size of the black hole, while

the second selects a spacelike slice in the saddlepoint metric. The de Sitter

and Nariai cases are included for A 5 0 and A 5 4 p / L , respectively.

The Euclidean part of the saddlepoint metric has a boundary with zero

second fundamental form everywhere except on s , where it is a delta function.

This boundary will split the full Euclidean solution in half in the same way
as in the de Sitter and Nariai solutions. This half of the Euclidean geometry

will give the real part of the action. Choosing K to be purely imaginary leads

to a Lorentzian universe, which once again can be obtained by analytically

continuing the Euclidean solution. As for the de Sitter and Nariai solutions,
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Fig. 2. Penrose diagram of the Schwarzschild ±de Sitter spacetime. The point C is the location

of the conical singularity in the Euclidean sector. The curved lines indicate a family of spacelike

slices which all pass through the conical singularity. This is necessary since one must specify

the metric there in order to ensure that the Euclidean solution is a saddlepoint. Regions I and

II lie between the black hole and the cosmological horizon. Region III corresponds to an

asymptotic de Sitter region, and region IV to the black hole interior.

the Lorentzian section will contribute only to the imaginary part of the action.
Therefore the real part of the action will be independent of K for imaginary K:

ISdS (A, K ) 5 IRe
SdS (A) 1 iIIm

SdS (A, K ) (4.4)

To calculate the probability measure, and thus the nucleation rate for a
Schwarzschild±de Sitter black hole pair, we need only calculate the real part

of the action, since

C *SdS C SdS 5 exp[ 2 2 Re(ISdS)] (4.5)

But 2 Re(ISdS) 5 2IRe
SdS(A), which is twice the action of the Schwarzschild±

de Sitter instanton, which in turn is equal to the action of the full Euclidean
Schwarzschild±de Sitter solution, I full

SdS.

Using Eq. (1.5) and R 5 4 L , one can show that

I full
SdS 5 2

L 9

" p
2

A d
8 p

(4.6)

where 9 is the four-volume of the Euclidean solution. The extra term gives

the contribution from a conical deficit angle d at a two-surface of area A [2].
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In order to facilitate the calculation of this action, it is useful to parame-

trize the Schwarzschild±de Sitter solutions by the radii b and c of the black

hole and the cosmological horizon. The parameters L and m can be expressed
in terms of the new parameters b and c:

L 5
3

b2 1 c2 1 bc
(4.7)

m 5
bc(b 1 c)

2(b2 1 c2 1 bc)
(4.8)

The Euclidean Schwarzschild±de Sitter metric is

ds2 5 V(r)d t 2 1 V(r) 2 1 dr2 1 r2 d V 2 (4.9)

where V(r) is given by Eq. (3.2); in terms of b and c it takes the form

V(r) 5
(r 2 b)(c 2 r)(r 1 b 1 c)

r(b2 1 c2 1 bc)
(4.10)

To avoid a conical singularity at the cosmological (black hole) horizon,
the Euclidean time t must be identified with the period t id

c ( t id
b ), where

t id
c,b 5 2 p ! grr| r 5 c,b Z -

- r
! g t t Z

2 1

r 5 c,b

(4.11)

where g t t 5 1/grr 5 V(r). This gives

t id
c,b 5 4 p Z - V

- r Z r 5 c,b

(4.12)

We choose to get rid of the conical singularity at r 5 c, so the volume will be

9 5
4 p
3

(c3 2 b3) t id
c (4.13)

The conical deficit angle at the black hole horizon is by definition

d 5 2 p 1 1 2
t c

t b 2 (4.14)

The two-sphere area A is obviously 4 p b2.

With L , 9, A, and d expressed in terms of b and c, Eq. (4.6) evaluates to

I full
SdS 5 2 p (b2 1 c2) (4.15)

Note that this action is related to the geometric entropy S and the total horizon

area in the usual way [5±9]:
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2 I 5 S 5
A 1 Ac

4
(4.16)

where Ac 5 4 p c2 is the area of the cosmological horizon. Thus we obtain

for the pair creation rate of arbitrary-size Schwarzschild±de Sitter black holes

in de Sitter space:

G SdS 5 exp[ 2 (I full
SdS 2 I full

dS )] 5 exp( 2 p bc) (4.17)

Using Eqs. (4.7) and A 5 4 p b2, we can easily rewrite this result in terms of

L and A, the argument we specified in the wave function. However, the

physical implications are quite clear from Eq. (4.17): a decreasing cosmologi-

cal constant corresponds to increasing cosmological horizon size c and thus,

as in the maximal case, to increasing suppression. At fixed value of the
cosmological constant, the suppression increases with the black hole radius

b, which is physically sensible. Considering the Planck length to be the lower

bound on the black hole size (b $ 1), we find that even the smallest black

holes are highly suppressed unless the cosmological constant is also near the

Planck value.

Chao has recently proposed [10] that one should calculate the saddlepoint
approximation to the wave function using ª constrained instantons,º which

include spacetimes with a conical singularity. He conjectures the conical

singularities should be allowed on the ª equator,º i.e., the Kij 5 0 surface on

which the real Euclidean geometry is matched to a real Lorentzian one. While

our results do not differ from some of those obtained by Chao, we feel that
his prescription is rather ad hoc, since it fails to justify why such configurations

should dominate the path integral. Moreover, it is ill defined, since the

existence of a surface of vanishing second fundamental form is rather special

to the simple case of a fixed cosmological constant. In a generic model, the

geometry will not be perfectly real anywhere on the tunneling geometry

except on the final spacelike surface that is measured [3].

5. QUANTUM EVOLUTION OF SCHWARZSCHILD ± DE SITTER
BLACK HOLES

Of the effects expected of a quantum theory of gravity, black hole

radiance [11] plays a particularly significant role. So far, however, mostly

asymptotically flat black holes have been considered. In this work, we investi-

gate a qualitatively different black hole spacetime, in which the black hole
is in a radiative equilibrium with a cosmological horizon.

The evaporation of black holes has been studied using two-dimensional

toy models, in which one-loop quantum effects were included [12±14]. We

have recently shown how to implement quantum effects in a more realistic
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class of two-dimensional models, which includes the important case of dimen-

sionally reduced general relativity [15]. The result we obtained for the trace

anomaly of a dilaton-coupled scalar field will be used here to study the
evaporation of cosmological black holes.

We shall consider the Schwarzschild±de Sitter family of black holes. The

size of these black holes varies between zero and the size of the cosmological

horizon. If the black hole is much smaller than the cosmological horizon,

the effect of the radiation coming from the cosmological horizon is negligible,

and one would expect the evaporation to be similar to that of Schwarzschild
black holes. Therefore we shall not be interested in this case. Instead, we

wish to investigate the quantum evolution of nearly degenerate Schwarz-

schild±de Sitter black holes. The degenerate solution, in which the black

hole has the maximum size, is called the Nariai solution [16]. In this solution

the two horizons have the same size and the same temperature. Therefore

they will be in thermal equilibrium. Intuitively, one would expect any slight
perturbation of the geometry to cause the black hole to become hotter than

the background. Thus, one may suspect the thermal equilibrium of the Nariai

solution to be unstable. The initial stages of such a runaway would be an

interesting and novel quantum gravitational effect quite different from the

evaporation of an asymptotically flat black hole. In this paper we will investi-
gate whether and how an instability develops in a two-dimensional model

derived from four-dimensional general relativity. We include quantum effects

at the one-loop level.

The remainder of this article is structured as follows: In Section 6 we

review the Schwarzschild±de Sitter solutions and the Nariai limit. We discuss

the qualitative expectations for the evaporation of degenerate black holes,
which motivate our one-loop study. The two-dimensional model correspond-

ing to this physical situation is presented in Section 7 and the equations of

motion are derived. In Section 8 the stability of the quantum Nariai solution

under different types of perturbations is investigated. We find, quite unexpect-

edly, that the Schwarzschild±de Sitter solution is stable, but we also identify

an unstable mode. Finally, the no-boundary condition is applied in Section
9 to study the stability of spontaneously nucleated cosmological black holes.

6. EVOLUTION OF NEARLY MAXIMAL BLACK HOLES

6.1. Metric

Recall the Schwarzschild±de Sitter metric

ds2 5 2 V(r) dt2 1 V(r) 2 1 dr2 1 r 2 d V 2 (6.1)
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where

V(r) 5 1 2
2 m
r

2
L
3

r 2 (6.2)

For 0 , m , 1±3 L 2 1/2, V has two positive roots rc and rb, corresponding to

the cosmological and the black hole horizons, respectively. The limit where

m ® 0 corresponds to the de Sitter solution. In the limit m ® 1±3 L 2 1/2 the

size of the black hole horizon approaches the size of the cosmological horizon,
and the above coordinates become inappropriate, since V(r) ® 0 between

the two horizons. Following Ginsparg and Perry [2], we write

9 m 2 L 5 1 2 3 e 2, 0 # e ¿ 1 (6.3)

Then the degenerate case corresponds to e ® 0. We define new time and

radial coordinates c and x by

t 5
1

e ! L
c ; r 5

1

! L F 1 2 e cos x 2
1

6
e 2 G (6.4)

In these coordinates the black hole horizon corresponds to x 5 0 and the
cosmological horizon to x 5 p . The new metric obtained from the transforma-

tions is, to first order in e ,

ds2 5 2
1

L 1 1 1
2

3
e cos x 2 sin2 x d c 2

1
1

L 1 1 2
2

3
e cos x 2 d x 2 (6.5)

1
1

L
(1 2 2 e cos x ) d V 2

2

This metric describes Schwarzschild±de Sitter solutions of nearly maximal
black hole size.

In these coordinates the topology of the spacelike sections of Schwarz-

schild±de Sitter becomes manifest: S1 3 S2. In general, the radius r of the

two-spheres varies along the S1 coordinate x , with the minimal (maximal)

two-sphere corresponding to the black hole (cosmological) horizon. In the

degenerate case, the two-spheres all have the same radius.

6.2. Thermodynamics

The surface gravities of the two horizons are given by [4]

k c,b 5 ! L 1 1 7
2

3
e 2 1 O( e 2) (6.6)
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where the upper (lower) sign is for the cosmological (black hole) horizon.

In the degenerate case, the two horizons have the same surface gravity and,

since T 5 k /2 p , the same temperature. They are in thermal equilibrium; one
could say that the black hole loses as much energy due to evaporation as it

gains due to the incoming radiation from the cosmological horizon. Away

from the thermal equilibrium, for nearly degenerate Schwarzschild±de Sitter

black holes, one could make the simplifying assumption that the horizons

still radiate thermally, with temperatures proportional to their surface gravities.

This would lead one to expect an instability: By Eq. (6.6), the black hole
will be hotter than the cosmological horizon, and will therefore suffer a net

loss of radiation energy. To investigate this suspected instability, a two-

dimensional model is constructed below, in which one-loop terms are

included.

7. TWO-DIMENSIONAL MODEL

The four-dimensional Lorentzian Einstein±Hilbert action with a cosmo-
logical constant is

S 5
1

16 p # d 4x ( 2 gIV)1/2 F RIV 2 2 L 2
1

2 o
N

i 5 1
( ¹ IVfi)

2 G (7.1)

where RIV and gIV are the four-dimensional Ricci scalar and metric determi-

nant, and the fi are scalar fields which will carry the quantum radiation.
We shall consider only spherically symmetric fields and quantum fluctua-

tions. Thus, we make a spherically symmetric metric ansatz,

ds2 5 e2 r ( 2 dt2 1 dx2) 1 e 2 2 f d V 2 (7.2)

where the remaining two-dimensional metric has been written in conformal

gauge; x is the coordinate on the one-sphere and has the period 2 p . Now the

spherical coordinates can be integrated out, and the action is reduced to

S 5
1

16 p # d 2x ( 2 g)1/2 e 2 2 f F R 1 2( ¹ f )2

1 2e2 f 2 2 L 2 o
N

i 5 1

( ¹ fi)
2 G (7.3)

where the gravitational coupling has been rescaled into the standard form.

Note that the scalar fields have acquired an exponential coupling to the dilaton

in the dimensional reduction. In order to take quantum effects into account,

we will find the classical solutions to the action S 1 W*. Here W* is the
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scale-dependent part of the one-loop effective action for dilaton coupled

scalars, which we derived in a recent paper [15]:

W* 5 2
1

48 p # d2x ( 2 g)1/2 F 1

2
R

1

N
R

2 6( ¹ f )2 1

N
R 2 2 f R G (7.4)

The ( ¹ f )2 term will be neglected; we justify this neglect at an appropriate

place below.

Following Hayward [17], we render this action local by introducing an

independent scalar field Z which mimics the trace anomaly. The f fields have
the classical solution fi 5 0 and can be integrated out. Thus we obtain the action

S 5
1

16 p # d2x ( 2 g)1/2 F 1 e 2 2 f 1
k
2

(Z 1 w f ) 2 R

2
k
2

( ¹ Z )2 1 2 1 2e 2 2 f ( ¹ f )2 2 2e 2 2 f L G (7.5)

where

k [
2N

3
(7.6)

There is some debate about the coefficient of the f R term in the effective

action. Our result [15] corresponds to the choice w 5 2; the RST coefficient

[13] corresponds to w 5 1, and the result of Nojiri and Odintsov [18] can

be represented by choosing w 5 2 6. In ref. 17, probably erroneously, w 5
2 1 was chosen. We take the large-N limit, in which the quantum fluctuations
of the metric are dominated by the quantum fluctuations of the N scalars;

thus, k À 1. In addition, for quantum corrections to be small we assume

that b [ k L ¿ 1. To first order in b, we shall find that the behavior of the

system is independent of w.

For compactness of notation, we denote differentiation with respect to
t (x) by an overdot (a prime). Further, we define for any functions f and g

- f - g [ 2 fÇ gÇ 1 f 8g8, - 2g [ 2 gÈ 1 g9 (7.7)

and

d f d g [ fÇ gÇ 1 f 8g8, d 2g [ gÈ 1 g9 (7.8)
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Variation with respect to r , f , and Z leads to the following equations of motion:

2 1 1 2
w k
4

e2 f 2 - 2 f 1 2( - f )2 1
k
4

e2 f - 2Z 1 e2 r 1 2 f ( L e 2 2 f 2 1) 5 0 (7.9)

1 1 2
w k
4

e2 f 2 - 2 r 2 - 2 f 1 ( - f )2 1 L e2 r 5 0 (7.10)

- 2Z 2 2 - 2 r 5 0 (7.11)

There are two equations of constraint:

1 1 2
w k
4

e2 f 2 ( d 2 f 2 2 d f d r ) 2 ( d f )2

5
k
8

e2 f [( d Z )2 1 2 d 2 Z 2 4 d Z d r ] (7.12)

1 1 2
w k
4

e2 f 2 ( f Ç 8 2 r Ç f 8 2 r 8 f Ç ) 2 f Ç f 8

5
k
8

e2 f [ZÇ Z 8 1 2ZÇ 8 2 2( r Ç Z 8 1 r 8ZÇ )] (7.13)

From Eq. (7.11), it follows that

Z 5 2 r 1 h (7.14)

where h satisfies

- 2 h 5 0 (7.15)

The remaining freedom in h can be used to satisfy the constraint equa-

tions for any choice of r , r Ç , f , and f Ç on an initial spacelike section. This

can be seen most easily by decomposing the fields and the constraint equations

into Fourier modes on the initial S1. By solving for the second term on the
right-hand side of Eq. (7.12), and by using Eqs. (7.14) and (7.15), the first

constraint yields one algebraic equation for each Fourier coefficient of h .

Similarly, the second constraint yields one algebraic equation for the time

derivative of each Fourier coefficient of h . If the initial slice was noncompact,

this argument would suffice. Here it must be verified, however, that h and

h Ç will have a period of 2 p . The problem reduces to the question of whether
the two constant mode constraint equations can be satisfied. Indeed, while

for each oscillatory mode of h there are two degrees of freedom (the Fourier

coefficient and its time derivative), the second time derivative of the constant

mode coefficient h È 0 must vanish by Eq. (7.15). Thus there is only one degree
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of freedom, h Ç 0, for the two constant mode equations. However, since we have

introduced no odd modes (i.e., modes of the form sin kx) in the perturbation of

f , none of the fields will contain any odd modes. Since each term in Eq.
(7.13) contains exactly one spatial derivative, each term will be odd. Therefore

all even-mode components of the second constraint vanish identically. In

particular the constant mode component will thus be automatically satisfied.

Then the freedom in h Ç 0 can be used to satisfy the constant mode component

of the remaining constraint, Eq. (7.12), through the first5 term on the right

hand side.

8. PERTURBATIVE STABILITY

8.1. Perturbation Ansatz

With the model developed above we can describe the quantum behavior

of a cosmological black hole of the maximal mass under perturbations. The

Nariai solution is still characterized by the constancy of the two-sphere radius,
e 2 f . Because of quantum corrections, this radius will no longer be exactly

L 2 1/2. Instead, the solution is given by

e2 r 5
1

L 1

1

cos2t
, e2 f 5 L 2 (8.1)

where

1

L 1

5
1

8 L
[4 2 (w 1 2)b

1 ! 16 2 8(w 2 2)b 1 (w 1 2)2b2] (8.2)

L 2 5
1

2w k
[4 1 (w 1 2)b (8.3)

2 ! 16 2 8(w 2 2)b 1 (w 1 2)2b2]

Expanding to first order in b, one obtains

1

L 1

’
1

L 1 1 2
wb

4 2 (8.4)

L 2 ’ L 1 1 2
b

2 2 (8.5)

5 Note that h Ç 0 can thus be purely imaginary, as indeed it will be for the Nariai solution, signaling
negative energy density of the quantum field.
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Let us now perturb this solution so that the two-sphere radius e 2 f , varies

slightly along the one-sphere coordinate x:

e2 f 5 L 2[1 1 2 e s (t) cos x] (8.6)

where we take e ¿ 1. We will call s the metric perturbation. A similar
perturbation could be introduced for e2 r , but it does not enter the equation

of motion for s at first order in e . This equation is obtained by eliminating

- 2Z and - 2 r from Eq. (7.9) using Eqs. (7.11) and (7.10), and inserting the

above perturbation ansatz. This yields

s È

s
5

a

cos2t
2 1 (8.7)

where

a [
2 ! 16 2 8(w 2 2)b 1 (w 1 2)2b2

4 2 wb
(8.8)

To first order in b, one finds that

a ’ 2 1 b (8.9)

which means that w and therefore the f R term in the effective action play

no role in the horizon dynamics at this level of approximation. This is also

the right place to discuss why the term ! 2 g( ¹ f )2(1/N)R in the effective

action can be neglected. In conformal coordinates this term is proportional

to ( - f )2 r . Thus, in the r -equation of motion, Eq. (7.9), it will lead to a ( - f )2

term, which is of second order in e and can be neglected. In the f -equation

of motion, Eq. (7.10), it yields terms proportional to k that are of first order

in e . They will enter the equation of motion for s via the k e2 f - 2Z term in

Eq. (7.10). Thus they will be of second order in b and can be dropped. The

neglect of the log m 2 term [15] can be justified in the same way.

8.2. Horizon Tracing

In order to describe the evolution of the black hole, one must know

where the horizon is located. The condition for a horizon is ( ¹ f )2 5 0.

Equation (8.6) yields

- f
- t

5 e s Ç cos x,
- f
- x

5 2 e s sin x (8.10)
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Therefore, the black hole and cosmological horizons are located at

xb(t) 5 arctan Z s Çs Z , xc(t) 5 p 2 xb(t) (8.11)

To first order in e , the size of the black hole horizon rb is given by

rb(t)
2 2 5 e2 f [t,xb(t)] 5 L 2[1 1 2 e d (t)] (8.12)

where we define the horizon perturbation

d [ s cos xb 5 s 1 1 1
s Ç 2

s 2 2
2 1/2

(8.13)

We will focus on the early time evolution of the black hole horizon; the

treatment of the cosmological horizon is completely equivalent.

To obtain explicitly the evolution of the black hole horizon radius, rb(t),
one must solve Eq. (8.7) for s (t), and use the result in Eq. (8.13) to evaluate

Eq. (8.12). If the horizon perturbation grows, the black hole is shrinking:

this corresponds to evaporation. It will be shown below, however, that the

behavior of d (t) depends on the initial conditions chosen for the metric

perturbation, s 0 and s Ç 0.

8.3. Classical Evolution

As a first check, one can examine the classical case, k 5 0. This has

a 5 2, and Eq. (8.7) can be solved exactly. From the constraint equations

(7.12) and (7.13) it follows that

s Ç 5 s tan t (8.14)

Therefore the appropriate boundary condition at t 5 0 is s Ç 0 5 0. The

solution is

s (t) 5
s 0

cos t
(8.15)

Then Eq. (8.13) yields

d (t) 5 s 0 5 const (8.16)

Since the quantum fields are switched off, no evaporation takes place; the

horizon size remains that of the initial perturbation. This simply describes

the case of a static Schwarzschild±de Sitter solution of nearly maximal mass,

as given in Eq. (6.6).
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8.4. Quantum Evolution

When we turn on the quantum radiation ( k . 0) the constraints no
longer fix the initial conditions on the metric perturbation. There will thus

be two linearly independent types of initial perturbation. The first is the one

we were forced to choose in the classical case: s 0 . 0, s Ç 0 5 0. It describes

the spatial section of a quantum-corrected Schwarzschild±de Sitter solution

of nearly maximal mass. Thus one might expect the black hole to evaporate.
For a . 2, Eq. (8.7) cannot be solved analytically. Since we are interested

in the early stages of the evaporation process, however, it will suffice to

solve for s as a power series in t. Using Eq. (8.13), one finds that

d (t) 5 s 0 F 1 2
1

2
(a 2 1)(a 2 2)t2 1 O(t 4) G

’ s 0 F 1 2
1

2
bt 2 G (8.17)

The horizon perturbation shrinks from its initial value. Thus, the black hole
size increases, and the black hole grows, at least initially, back toward the

maximal radius. One could say that nearly maximal Schwarzschild±de Sitter

black holes ª antievaporate.º

This is a surprising result, since intuitive thermodynamic arguments

would have led to the opposite conclusion. The antievaporation can be under-
stood in the following way. By specifying the metric perturbation, the radiation

distribution of the Z field is implicitly fixed through the constraint equations

(7.12) and (7.13). Our result shows that radiation is heading toward the black

hole if the boundary conditions s 0 . 0, s Ç 0 5 0 are chosen.

Let us now turn to the second type of initial metric perturbation: s 0 5
0, s Ç 0 . 0. Here the spatial geometry is unperturbed on the initial slice, but
it is given a kind of ª pushº that corresponds to a perturbation in the radiation

bath. Solving once again for s with these boundary conditions, and using

Eq. (8.13), one finds for small t

d (t) 5 s Ç 0t
2 (8.18)

The horizon perturbation grows. This perturbation mode is unstable, and

leads to evaporation.

We have seen that the radiation equilibrium of a Nariai universe displays

unusual and nontrivial stability properties. The evolution of the black hole
horizon depends crucially on the type of metric perturbation. Nevertheless,

one may ask whether a cosmological black hole will typically evaporate or

not. Cosmological black holes cannot come into existence through classical

gravitational collapse, since they live in an exponentially expanding de Sitter
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background. The only natural way for them to appear is through the quantum

process of pair creation [2]. This pair creation process can also occur in an

inflationary universe because of its similarity to de Sitter space [4, 3, 19].
The nucleation of a Lorentzian black hole spacetime is described as the

analytic continuation of an appropriate complex solution of the Einstein

equations, which satisfies the no-boundary condition [1]. We will show below

that the no-boundary condition selects a particular linear combination of the

two types of initial metric perturbation, thus allowing us to determine the

fate of the black hole.

9. NO-BOUNDARY CONDITION

To obtain the unperturbed Euclidean Nariai solution in conformal gauge,

one performs the analytic continuation t 5 i t in the Lorentzian solution, Eq.

(8.1). This yields

(dsIV)2 5 e2 r (d t 2 1 dx2) 1 e 2 2 f d V 2 (9.1)

and

e2 r 5
1

L 1

1

cosh2 t
, e2 f 5 L 2 (9.2)

In four dimensions, this describes the product of two round two-spheres of
slightly different radii, L 2 1/2

1 and L 2 1/2
2 . The analytic continuation to a

Lorentzian Nariai solution corresponds to a path in the t plane, first along

the real t axis, from t 5 2 ` to t 5 0, and then along the imaginary axis

from t 5 0 to t 5 p /2. This can be visualized geometrically by cutting the

first two-sphere in half and joining to it a Lorentzian (1 1 1)-dimensional

de Sitter hyperboloid. Because the ( t , x) sphere has its north (south) pole at
t 5 ` ( t 5 2 ` ), it is convenient to rescale time:

sin u 5
1

cosh t
(9.3)

or, equivalently,

cos u 5 2 tanh t , cot u 5 2 sinh t , du 5
d t

cosh t
(9.4)

With the new time coordinate u, the solution takes the form

(dsIV)2 5
1

L 1

(du2 1 sin2 u dx2) 1
1

L 2

d V 2 (9.5)

Now the south pole lies at u 5 0, and the nucleation path runs to u 5 p /2

and then parallel to the imaginary axis (u 5 p /2 1 iv) from v 5 0 to v 5 ` .
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The perturbation of e2 f , Eq. (8.6), introduces the variable s , which

satisfies the Euclidean version of Eq. (8.7):

sin2u
d2 s
du2 1 sin u cos u

d s
du

2 (1 2 a sin2u) s 5 0 (9.6)

In addition, the nature of the Euclidean geometry enforces the boundary

condition that the perturbation vanish at the south pole:

s (u 5 0) 5 0 (9.7)

Otherwise, e2 f would not be single-valued, because the coordinate x degener-

ates at this point. This leaves s Ç as the only degree of freedom in the boundary

conditions at u 5 0.

It will be useful to define the parameter c by the relation c(c 1 1) [
a. The classical case, a 5 2, corresponds to c 5 1; for small b, they receive

the quantum corrections a 5 2 1 b and c 5 1 1 b/3. With the boundary
condition (9.7), the equation of motion for s , Eq. (9.6), can be solved exactly

only for integer c (a 5 2, 6, 12, 20, . . .). The solution is of the form

s (u) 5 o
0 # k , c/2

Ak sin(c 2 2k)u (9.8)

with constants Ak. Even for noninteger c, however, this turns out to be a

good approximation in the region 0 # u , p /2 of the (u, v) plane. Since we

are interested in the case where b ¿ 1, the sum in Eq. (9.8) contains only

one term, and we use the approximation6

s (u) ’ AÄ sin cu (9.9)

It is instructive to consider the classical case first. (Physically, this is

questionable, since the no-boundary condition violates the constraints at

second order in e .) For b 5 0, the solution s (u) 5 AÄ sin u is exact. Along

the Lorentzian line (u 5 p /2 1 iv), this solution becomes s (v) 5 AÄ cosh v.

6 Treating Eq. (9.6) perturbatively in b around a 5 2 leads to untractable integrals. Fortunately
the guessed approximation in Eq. (9.9) turns out to be rather accurate, especially for late
Lorentzian times v, which is the regime in which we claim our results to be valid. It is easy
to check numerically that for sufficiently large v (v . 10), both the real and the imaginary
parts of Eq. (9.9) have a relative error b/30 or less. The result for the phase of the prefactor,
Eq. (9.13), has a relative error of less than 10 2 4, independently of b. Crucially, the exponential
behavior at late Lorentzian times is reproduced perfectly, as the ratio

- s /- v

s

using the approximation, agrees with the numerical result to machine accuracy. Therefore the
relative error in Eq. (9.15) is the same as in Eq. (9.9); in both equations it is located practically
entirely in the magnitude of the prefactor. These statements hold for 0 # b # 1, which really
is a wider interval than necessary.
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By transforming back to the Lorentzian time variable t, one can check that

this is the stable solution found in the previous section, with s 0 5 AÄ , s Ç 0 5
0. For real AÄ , it is real everywhere along the nucleation path. Thus, when
the quantum fields are turned off, the Euclidean formalism predicts that the

unstable mode will not be excited. This is a welcome result, since there are

no fields that could transport energy from one horizon to another.

Once b is nonzero, however, it is easy to see that - s / - u no longer

vanishes at the origin of Lorentzian time, u 5 p /2. This indicates that the

unstable mode, s Ç 0 Þ 0, will be excited. Unfortunately, checking this is not
entirely straightforward, because s is no longer real everywhere along the

nucleation path. One must impose the condition that s and s Ç be real at late

Lorentzian times. We will first show that this can be achieved by a suitable

complex choice of A. One can then calculate the horizon perturbation d from

the real late-time evolution of the metric perturbation s to demonstrate that

evaporation takes place.
From Eq. (9.9) one obtains the Lorentzian evolution of s ,

s (v) 5 AÄ sin c 1 p
2

1 iv 2 (9.10)

5 AÄ 1 sin
c p
2

cosh cv 1 i cos
c p
2

sinh cv 2 (9.11)

For late Lorentzian times (i.e., large v), cosh cv ’ sinh cv ’ ecv/2, so the
equation becomes

s (v) ’
1

2
AÄ (ie 2 icp /2) ecv (9.12)

This can be rendered purely real by choosing the complex constant AÄ to be

AÄ 5 A ( 2 ieic p /2) (9.13)

where A is real.

Now we can return to the question of whether the Euclidean boundary

condition leads to evaporation. After transforming the time coordinate we

find that the expression for the growth of the horizon perturbation, Eq.

(8.13), becomes

d (v) 5 s F 1 1 cosh2v 1 - s / - v

s 2
2 G 2 1/2

(9.14)
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The late-time evolution is given by s (v) 5 1±2 A ecv. This yields, for large v,

d (v) ’
A

2
ecv 1 1 1

c2

4
e2v 2

2 1/2

’
A

c
exp 1 b

3
v 2 (9.15)

This result confirms that pair-created cosmological black holes will indeed

evaporate. The magnitude of the horizon perturbation is proportiona l to the

initial perturbation strength A. The evaporation rate grows with k L . This
agrees with intuitive expectations, since k measures the number of quantum

fields that carry the radiation.

10. SUMMARY AND CONCLUSIONS

We have argued that the momentum representation of the wave function

of the universe has several advantages over the metric representation. Most
importantly, the requirement that we live in a Lorentzian universe can be

implemented straightforwardly in this formulation: one must take the argu-

ment of the wave function to be purely imaginary. Moreover, unlike the three-

metric, the canonical momentum is closely related to observable quantities

like the expansion rate of the universe, and it distinguishes between expanding
and contracting branches. While the momentum and metric representations

are related by a Laplace transform and thus contain the same information,

we conclude that many of the most relevant physical properties of a spacetime

are manifest only in the momentum representation.

We have clarified how and under which conditions Euclidean solutions

with a conical singularity may be used as saddlepoints. We showed that this
is possible in the case of submaximal Schwarzschild±de Sitter universes if

the spacelike boundary S is chosen to contain the conical singularity and the

metric is specified there. On the rest of S , a purely imaginary second funda-

mental form is specified to ensure that the observed universe is Lorentzian.

This enabled us to describe the quantum nucleation of such spacetimes and

calculate their creation rate on a de Sitter background.
We have investigated the quantum stability of the Schwarzschild±

de Sitter black holes of maximal mass, the Nariai solutions. From four-

dimensional spherically symmetric general relativity with a cosmological

constant and N minimally coupled scalar fields we obtained a two-dimensional

model in which the scalars couple to the dilaton. The one-loop terms were

included in the large-N limit, and the action was made local by introducing
a field Z which mimics the trace anomaly.

We found the quantum-corrected Nariai solution and analyzed its behav-

ior under perturbations away from degeneracy. There are two possible ways

of specifying the initial conditions for a perturbation on a Lorentzian spacelike
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section. The first possibility is that the displacement away from the Nariai

solution is nonzero, but its time derivative vanishes. This perturbation corres-

ponds to nearly degenerate Schwarzschild±de Sitter space, and, somewhat
surprisingly, this perturbation is stable at least initially. The second possibility

is a vanishing displacement and nonvanishing derivative. These initial condi-

tions lead directly to evaporation. The different behavior of these two types

of perturbations can be explained by the fact that the initial radiation distribu-

tion is implicitly specified by the initial conditions, through the constraint

equations.
If neutral black holes nucleate spontaneously in pairs on a de Sitter

background, the initial data will be constrained by the no-boundary condition:

it selects a linear combination of the two types of perturbations. By finding

appropriate complex compact instanton solutions we showed that this condi-

tion leads to black hole evaporation. Thus neutral primordial black holes

are unstable.
In a separate paper [20] it will be argued that one-loop quantum perturba-

tions on the Nariai universe can lead to the formation of multiple black hole

horizons. The evaporation of such black holes causes the spacelike sections

of de Sitter space to dissociate into large, separate de Sitter universes. This

effect occurs iteratively and leads to the proliferation of de Sitter universes.
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